Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 114: 26-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27521895

RESUMO

In an attempt to discover new scaffolds for anti-diabetic activity from plants, we screened extracts from Ixora brachiata Roxb. for their effect on glucose uptake in L6 myotubes. The petroleum (PE) extract of the plant showed a significant increase in insulin stimulated glucose uptake by L6 myotubes. The bioactivity guided fractionation of the crude extract yielded a compound (E)-9-oxooctadec-10-en-12-ynoic acid (OEA). The compound induced a dose dependent increase in insulin stimulated glucose uptake in L6 myotubes with an EC50 of 22.96µM. OEA also increased the phosphorylation of IRS-1, Akt and AS160 leading to increased GLUT4 translocation to the plasma membrane indicating that it promotes insulin stimulated glucose uptake in L6 myotubes by activating the PI3K pathway.


Assuntos
Di-Inos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Glucose/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubiaceae/química , Transdução de Sinais , Animais , Células Cultivadas , Di-Inos/isolamento & purificação , Ácidos Graxos Insaturados/isolamento & purificação , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
2.
Eur J Pharmacol ; 769: 117-26, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546724

RESUMO

NFAT-133 is an aromatic compound with cinammyl alcohol moiety, isolated from streptomycetes strain PM0324667. We have earlier reported that NFAT-133 increases insulin stimulated glucose uptake in L6 myotubes using a PPARγ independent mechanism and reduces plasma or blood glucose levels in diabetic mice. Here we investigated the effects of NFAT-133 on cellular signaling pathways leading to glucose uptake in L6 myotubes. Our studies demonstrate that NFAT-133 increases glucose uptake in a dose- and time-dependent manner independent of the effects of insulin. Treatment with Akti-1/2, wortmannin and increasing concentrations of insulin had no effect on NFAT-133 mediated glucose uptake. NFAT-133 induced glucose uptake is completely mitigated by Compound C, an AMPK inhibitor. Further, the kinases upstream of AMPK activation namely; LKB-1 and CAMKKß are not involved in NFAT-133 mediated AMPK activation nor does the compound NFAT-133 have any effect on AMPK enzyme activity. Further analysis confirmed that NFAT-133 indirectly activates AMPK by reducing the mitochondrial membrane potential and increasing the ratio of AMP:ATP.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Pentanóis/farmacologia , Pentanonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Fatores de Tempo
3.
AMB Express ; 1(1): 42, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22104600

RESUMO

Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 µM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...